Determining the Number of Communication Sources Using a Sensor Array

نویسندگان

  • Eran Fishler
  • Michael
  • Hagit Messer
چکیده

Determining the number of sources in a received wave-field is a well known and a well investigated problem. In this problem, the number of sources impinging on an array of sensors is to be estimated. The common approach for solving this problem is to use an information theoretic criterion like the Minimum Description Length (MDL), or the Akaike Information Criterion. Under the assumption that the transmitted signals are Gaussian, the MDL estimator takes both simple and intuitive form. Therefore, this estimator is commonly used even when the signals known to be non-Gaussian communication signals. However, its ability to resolve signals (resolution capacity) is limited by the number of sensors, minus one. In this paper, we study the MDL estimator that is based the correct, non-Gaussian signal distribution of digital signals. We show that this approach leads to both improved performance and improved resolution capacity, that is-the number of signals that can be detected by the resulting MDL processor is larger than the number of array sensors. In addition, a novel asymptotic performance analysis, which can be used to predict the performance of the MDL estimator analytically, is presented. Simulation results support the theoretical conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین جهت منابع با استفاده از زیرفضای کرونکر

This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Determining the Number of Discrete Alphabet Sources from Sensor Data

Determining the number of sources in a received wave field is a well-known and a well-investigated problem. In this problem, the number of sources impinging on an array of sensors is to be estimated. The common approach for solving this problem is to use an information theoretic criterion like the minimum description length (MDL) or the Akaike information criterion. Under the assumption that th...

متن کامل

Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array

In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...

متن کامل

Wireless sensor network design through genetic algorithm

In this paper, we study WSN design, as a multi-objective optimization problem using GA technique. We study the effects of GA parameters including population size, selection and crossover method and mutation probability on the design. Choosing suitable parameters is a trade-off between different network criteria and characteristics. Type of deployment, effect of network size, radio communication...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003